Preview

Patient-Oriented Medicine and Pharmacy

Advanced search

The efficacy of nutritional support and its role in the treatment of persons with sarcopenia

https://doi.org/10.37489/2949-1924-0003

Abstract

The aim of the current descriptive review was to identify the role of nutrition in the prevention and treatment of sarcopenia in the elderly. Most of the publications included in this review show that protein and vitamin D intake, as well as a healthy and balanced diet, plays an important protective role against the development of sarcopenia. However, current scientific evidence is insufficient to draw sound conclusions. Although the role of nutrition in sarcopenia has been assessed in scientific publications over the past decade, most of the studies conducted are highly heterogeneous and had small sample sizes. Larger meta-analyses and randomized trials with strict inclusion criteria must better describe the role of nutrition in the development and treatment of sarcopenia. In conclusion, general recommendations on nutrition are given. A literature search was conducted in three electronic databases PubMed, Cochrane Library, Scopus, for the period from 2012 to December 1, 2022. Secondary sources included articles cited in articles extracted from the above sources. Inclusion criteria were crossover or cohort studies involving individuals ≥60 years of age. There were no restrictions on the language bias of the publication. Search strategy: key words used to describe the condition of the participants were: «old age», «infirmity», and «sarcopenia».

About the Authors

I. E. Pleshchev
Yaroslavl State Medical University
Russian Federation

Pleshchev Igor E. — M. D., Senior lecturer of the Department of Physical Culture and Sports

Yaroslavl


Competing Interests:

The authors declare no conflict of interest.



V. N. Nikolenko
Sechenov First Moscow State Medical University (Sechenov University); Moscow State University named after M. V. Lomonosov
Russian Federation

Nikolenko Vladimir N. — Dr. Sci. (Med.), Professor, Head of the Department of Human Anatomy, Sklifosovsky Institute of Clinical Medicine, Sechenov First Moscow State Medical University (Sechenov University); Head of the Department of Normal and Topographic Anatomy, Fundamental Medicine Faculty, Moscow State University named after M. V. Lomonosov

Moscow


Competing Interests:

The authors declare no conflict of interest.



E. E. Achkasov
Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Achkasov Evgeny E. — Dr. Sci. (Med.), Professor, Head of the Department of Sports Medicine and Medical Rehabilitation, Sklifosovsky Institute of Clinical Medicine

Moscow


Competing Interests:

The authors declare no conflict of interest.



A. N. Shkrebko
Yaroslavl State Medical University
Russian Federation

Shkrebko Aleksandr N. — Dr. Sci. (Med.), Professor, Vice-Rector, Head of the Department of Medical Rehabilitation and Sports Medicine

Yaroslavl


Competing Interests:

The authors declare no conflict of interest.



T. N. Pleshchevа
Yaroslavl State Medical University
Russian Federation

Pleshchevа Tatyana N. — M. D., Senior lecturer of the Department of General hygiene with ecology

Yaroslavl


Competing Interests:

The authors declare no conflict of interest.



A. B. Birg
Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Birg Anna B. — Student Clinical medicine 2th years

Moscow


Competing Interests:

The authors declare no conflict of interest.



Z. Xinliang
Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Xinliang Z. — Student Clinical medicine 6th years

Moscow


Competing Interests:

The authors declare no conflict of interest.



D. A. Grekov
Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Grekov Dmitrij A. — resident doctor of the Department of Traumatology and Orthopedics

Moscow


Competing Interests:

The authors declare no conflict of interest.



References

1. Sobestiansky S, Michaelsson K, Cederholm T. Sarcopenia prevalence and associations with mortality and hospitalisation by various sarcopenia definitions in 85-89 year old community-dwelling men: a report from the ULSAM study. BMC Geriatr. 2019;19:318. doi: 10.1186/s12877-019-1338-1

2. Beaudart C, Locquet M, Reginster JY, Delandsheere L, Petermans J, Bruyere O. Quality of life in sarcopenia measured with the SarQoL®: impact of the use of different diagnosis definitions. Aging Clin Exp Res. 2018;30 (4):307-13. doi: 10.1007/s40520-017-0866-9

3. Park HM. Current Status of Sarcopenia in Korea: A Focus on Korean Geripausal Women. Ann Geriatr Med Res. 2018;22 (2):52-61. doi: 10.4235/agmr.2018.22.2.52

4. Vellas B, Fielding RA, Bens C, et al. Implications of ICD-10 for Sarcopenia Clinical Practice and Clinical Trials: Report by the International Conference on Frailty and Sarcopenia Research Task Force. J Frailty Aging. 2018;7 (1):2-9. doi: 10.14283/jfa.2017.30

5. Cruz-Jentoft AJ, Bahat G, Bauer J, et al. Sarcopenia: revised European consensus on definition and diagnosis [published correction appears in Age Ageing. 2019 Jul 1;48 (4):601]. Age Ageing. 2019;48 (1):16-31. doi: 10.1093/ageing/afy169

6. Iannone F, Montesanto A, Cione E, Crocco P, Caroleo MC, Dato S, Rose G, Passarino G. Expression Patterns of Muscle-Specific miR-133b and miR-206 Correlate with Nutritional Status and Sarcopenia. Nutrients, 2020:12 (2);297. https://doi.org/10.3390/nu12020297.

7. Плещёв И. Е., Николенко В. Н., Ачкасов Е. Е., Шкребко А. Н. Алгоритм применения индивидуально-группового протокола при комплексной реабилитации пациентов с саркопенией. Вестник «Биомедицина и Социология». 2022:24 (5);44-53. doi: 10.26787/nydha-2618-8783-2022-7-2-44-53

8. Chen LK, Woo J, Assantachai P, et al. Asian Working Group for Sarcopenia: 2019 Consensus Update on Sarcopenia Diagnosis and Treatment. J Am Med Dir Assoc. 2020;21 (3):300-307. e2. doi: 10.1016/j.jamda.2019.12.012

9. Bocharova KA, Rukavishnikova SA, Osipov KV, Shadrin KA, Odegnal AA [et al.]. Sarcopenia in the long-term care system. Sovremennye problemy zdravoohranenija i medicinskoj statistiki. 2021;2:12-26. (In Russ.). https://doi.org/10.24412/2312-2935-2021-2-12-26.

10. Pleshchev IE, Achkasov EE, Nikolenko VN, Shkrebko AN. Sarcopenia: modern approaches to diagnostics and rehabilitation. Modern problems of science and education. 2022;1:66. (In Russ.). URL: https://science-education.ru/ru/article/view-id=31443 (date of application: 30.04.2022). doi: 10.17513/spno.31443

11. Yedigaryan L, Gatti M, Marini V, Maraldi T, Sampaolesi M. Shared and Divergent Epigenetic Mechanisms in Cachexia and Sarcopenia. Cells. 2022;11 (15):2293. doi: 10.3390/cells11152293

12. Alexandre TDS, Duarte YAO, Santos JLF, Lebrao ML. Prevalence and associated factors of sarcopenia, dynapenia, and sarcodynapenia in community-dwelling elderly in Sao Paulo — SABE Study. [Prevalencia e fatores associados a sarcopenia, dinapenia e sarcodinapenia em idosos residentes no Municipio de Sao Paulo — Estudo SABE]. Rev Bras Epidemiol. 2019;21Suppl 02 (Suppl 02): e180009. doi: 10.1590/1980-549720180009.supl.2

13. Simsek H, Meseri R, Sahin S, et al. Prevalence of sarcopenia and related factors in community-dwelling elderly individuals. Saudi Med J. 2019;40 (6):568-74. doi: 10.15537/smj.2019.6.23917

14. Shafiee G, Keshtkar A, Soltani A, Ahadi Z, Larijani B, Heshmat R. Prevalence of sarcopenia in the world: a systematic review and meta-analysis of general population studies. J Diabetes Metab Disord. 2017;16:21. doi: 10.1186/s40200-017-0302-x

15. Damanti S, Azzolino D, Roncaglione C, Arosio B, Rossi P, Cesari M. Efficacy of Nutritional Interventions as Stand-Alone or Synergistic Treatments with Exercise for the Management of Sarcopenia. Nutrients. 2019;11 (9):1991. doi: 10.3390/nu11091991

16. Dato S, Bellizzi D, Rose G, Passarino G. The impact of nutrients on the aging rate: A complex interaction of demographic, environmental and genetic factors. Mech Ageing Dev. 2016;154:49-61. doi: 10.1016/j.mad.2016.02.005

17. Agarwal E, Miller M, Yaxley A, Isenring E. Malnutrition in the elderly: a narrative review. Maturitas. 2013;76 (4):296-302. doi: 10.1016/j.maturitas.2013.07.013

18. Rasheed S, Woods RT. Malnutrition and quality of life in older people: a systematic review and meta-analysis. Ageing Res Rev. 2013;12 (2):561-6. doi: 10.1016/j.arr.2012.11.003

19. Gielen E, Verschueren S, O»Neill TW, et al. Musculoskeletal frailty: a geriatric syndrome at the core of fracture occurrence in older age. Calcif Tissue Int. 2012;91 (3):161-77. doi: 10.1007/s00223-012-9622-5

20. Liguori I, Russo G, Aran L, et al. Sarcopenia: assessment of disease burden and strategies to improve outcomes. Clin Interv Aging. 2018;13:913-27. doi: 10.2147/CIA.S149232

21. Isanejad M, Mursu J, Sirola J, et al. Dietary protein intake is associated with better physical function and muscle strength among elderly women. Br J Nutr. 2016;115 (7):1281-91. doi: 10.1017/S000711451600012X

22. Landi F, Calvani R, Tosato M, et al. Animal-Derived Protein Consumption Is Associated with Muscle Mass and Strength in Community-Dwellers: Results from the Milan EXPO Survey. J Nutr Health Aging. 2017;21 (9):1050-6. doi: 10.1007/s12603-017-0974-4

23. Park Y, Choi JE, Hwang HS. Protein supplementation improves muscle mass and physical performance in undernourished prefrail and frail elderly subjects: a randomized, double-blind, placebo-controlled trial. Am J Clin Nutr. 2018;108 (5):1026-33. doi: 10.1093/ajcn/nqy214

24. Morley JE. Anorexia of aging: a true geriatric syndrome. J Nutr Health Aging. 2012;16 (5):422-5. doi: 10.1007/s12603-012-0061-9

25. Malafarina V, Uriz-Otano F, Gil-Guerrero L, Iniesta R. The anorexia of ageing: physiopathology, prevalence, associated comorbidity and mortality. A systematic review. Maturitas. 2013;74 (4):293-302. doi: 10.1016/j.maturitas.2013.01.016

26. Rogeri PS, Zanella R Jr, Martins GL, et al. Strategies to Prevent Sarcopenia in the Aging Process: Role of Protein Intake and Exercise. Nutrients. 2021;14 (1):52. doi: 10.3390/nu14010052

27. Deutz NE, Bauer JM, Barazzoni R, et al. Protein intake and exercise for optimal muscle function with aging: recommendations from the ESPEN Expert Group. Clin Nutr. 2014;33 (6):929-36. doi: 10.1016/j.clnu.2014.04.007

28. Bauer J, Biolo G, Cederholm T, et al. Evidence-based recommendations for optimal dietary protein intake in older people: a position paper from the PROT-AGE Study Group. J Am Med Dir Assoc. 2013;14 (8):542-59. doi: 10.1016/j.jamda.2013.05.021

29. Burd NA, Gorissen SH, van Loon LJ. Anabolic resistance of muscle protein synthesis with aging. Exerc Sport Sci Rev. 2013;41 (3):169-73. doi: 10.1097/JES.0b013e318292f3d5

30. van Vliet S, Burd NA, van Loon LJ. The Skeletal Muscle Anabolic Response to Plant — versus Animal-Based Protein Consumption. J Nutr. 2015;145 (9):1981-91. doi: 10.3945/jn.114.204305

31. Burd NA, Yang Y, Moore DR, Tang JE, Tarnopolsky MA, Phillips SM. Greater stimulation of myofibrillar protein synthesis with ingestion of whey protein isolate v. micellar casein at rest and after resistance exercise in elderly men. Br J Nutr. 2012;108 (6):958-62. doi: 10.1017/S0007114511006271

32. Bouillanne O, Curis E, Hamon-Vilcot B, et al. Impact of protein pulse feeding on lean mass in malnourished and at-risk hospitalized elderly patients: a randomized controlled trial. Clin Nutr. 2013;32 (2):186-92. doi: 10.1016/j.clnu.2012.08.015

33. Bianchi L, Ferrucci L, Cherubini A, et al. The Predictive Value of the EWGSOP Definition of Sarcopenia: Results from the InCHIANTI Study. J Gerontol A Biol Sci Med Sci. 2016;71 (2):259-64. doi: 10.1093/gerona/glv129

34. Reidy PT, Rasmussen BB. Role of Ingested Amino Acids and Protein in the Promotion of Resistance Exercise-Induced Muscle Protein Anabolism. J Nutr. 2016;146 (2):155-83. doi: 10.3945/jn.114.203208

35. Baum JI, Wolfe RR. The Link between Dietary Protein Intake, Skeletal Muscle Function and Health in Older Adults. Healthcare (Basel). 2015;3 (3):529-43. Published 2015 Jul 9. doi: 10.3390/healthcare3030529

36. Rafii M, Chapman K, Elango R, et al. Dietary Protein Requirement of Men >65 Years Old Determined by the Indicator Amino Acid Oxidation Technique Is Higher than the Current Estimated Average Requirement. J Nutr. 2015;146 (4):681-7. doi: 10.3945/jn.115.225631

37. Papadopoulou SK. Sarcopenia: A Contemporary Health Problem among Older Adult Populations. Nutrients. 2020;12 (5):1293. doi: 10.3390/nu12051293

38. Pleshchev IE, Achkasov EE, Nikolenko VN, Shkrebko AN, Sankova MV. Elderly People Physiical Rehabilitation Personalization: a Prospective Comparative Study of 198 Patients with Sarcopenia. Bulletin of Rehabilitation Medicine. 2022;21 (6): 9-18. doi: 10.38025/2078-1962-2022-21-6-9-18

39. Abe S, Ezaki O, Suzuki M. Medium-Chain Triglycerides in Combination with Leucine and Vitamin D Increase Muscle Strength and Function in Frail Elderly Adults in a Randomized Controlled Trial. J Nutr. 2016;146 (5):1017-26. doi: 10.3945/jn.115.228965

40. Bauer JM, Verlaan S, Bautmans I, et al. Effects of a vitamin D and leucine-enriched whey protein nutritional supplement on measures of sarcopenia in older adults, the PROVIDE study: a randomized, double-blind, placebo-controlled trial. J Am Med Dir Assoc. 2015;16 (9):740-7. doi: 10.1016/j.jamda.2015.05.021

41. Evans M, Guthrie N, Pezzullo J, Sanli T, Fielding RA, Bellamine A. Efficacy of a novel formulation of L-Carnitine, creatine, and leucine on lean body mass and functional muscle strength in healthy older adults: a randomized, double-blind placebo-controlled study. Nutr Metab (Lond). 2017;14:7. doi:10.1186/s12986-016-0158-y

42. Ispoglou T, White H, Preston T, McElhone S, McKenna J, Hind K. Double-blind, placebo-controlled pilot trial of L-Leucine-enriched amino-acid mixtures on body composition and physical performance in men and women aged 65-75 years. Eur J Clin Nutr. 2016;70 (2):182-8. doi: 10.1038/ejcn.2015.91

43. Verlaan S, Maier AB, Bauer JM, et al. Sufficient levels of 25-hydroxyvitamin D and protein intake required to increase muscle mass in sarcopenic older adults — The PROVIDE study. Clin Nutr. 2018;37 (2):551-7. doi: 10.1016/j.clnu.2017.01.005

44. Aleman-Mateo H, Carreon VR, Macias L, Astiazaran-Garcia H, Gallegos-Aguilar AC, Enriquez JR. Nutrient-rich dairy proteins improve appendicular skeletal muscle mass and physical performance, and attenuate the loss of muscle strength in older men and women subjects: a single-blind randomized clinical trial. Clin Interv Aging. 2014;9:1517-25. doi: 10.2147/CIA.S67449

45. Anthony JC, Anthony TG, Kimball SR, Jefferson LS. Signaling pathways involved in translational control of protein synthesis in skeletal muscle by leucine. J Nutr. 2001;131 (3):856S — 860S. doi: 10.1093/jn/131.3.856S

46. Xu ZR, Tan ZJ, Zhang Q, Gui QF, Yang YM. The effectiveness of leucine on muscle protein synthesis, lean body mass and leg lean mass accretion in older people: a systematic review and meta-analysis. Br J Nutr. 2015;113 (1):25-34. doi: 10.1017/S0007114514002475

47. Zengin A, Jarjou LM, Prentice A, Cooper C, Ebeling PR, Ward KA. The prevalence of sarcopenia and relationships between muscle and bone in ageing West-African Gambian men and women. J Cachexia Sarcopenia Muscle. 2018;9 (5):920-8. doi: 10.1002/jcsm.12341

48. Deutz NE, Pereira SL, Hays NP, et al. Effect of β-hydroxy-β-methylbutyrate (HMB) on lean body mass during 10 days of bed rest in older adults. Clin Nutr. 2013;32 (5):704-12. doi: 10.1016/j.clnu.2013.02.011

49. Scott D, Ebeling PR, Sanders KM, Aitken D, Winzenberg T, Jones G. Vitamin d and physical activity status: associations with five-year changes in body composition and muscle function in community-dwelling older adults. J Clin Endocrinol Metab. 2015;100 (2):670-8. doi: 10.1210/jc.2014-3519

50. Ceglia L, da Silva Morais M, Park LK, et al. Multi-step immunofluorescent analysis of vitamin D receptor loci and myosin heavy chain isoforms in human skeletal muscle. J Mol Histol. 2010;41 (2-3):137-42. doi: 10.1007/s10735-010-9270-x

51. Pojednic RM, Ceglia L, Olsson K, et al. Effects of 1,25-dihydroxyvitamin D3 and vitamin D3 on the expression of the vitamin d receptor in human skeletal muscle cells. Calcif Tissue Int. 2015;96 (3):256-63. doi: 10.1007/s00223-014-9932-x

52. Beaudart C, Buckinx F, Rabenda V, et al. The effects of vitamin D on skeletal muscle strength, muscle mass, and muscle power: a systematic review and meta-analysis of randomized controlled trials. J Clin Endocrinol Metab. 2014;99 (11):4336-45. doi: 10.1210/jc.2014-1742

53. Takagi A, Hawke P, Tokuda S, et al. Serum carnitine as a biomarker of sarcopenia and nutritional status in preoperative gastrointestinal cancer patients. J Cachexia Sarcopenia Muscle. 2022;13 (1):287-95. doi: 10.1002/jcsm.12906

54. Ruiz M, Labarthe F, Fortier A, et al. Circulating acylcarnitine profile in human heart failure: a surrogate of fatty acid metabolic dysregulation in mitochondria and beyond. Am J Physiol Heart Circ Physiol. 2017;313 (4):H768 — H781. doi: 10.1152/ajpheart.00820.2016

55. Hector AJ, McGlory C, Damas F, Mazara N, Baker SK, Phillips SM. Pronounced energy restriction with elevated protein intake results in no change in proteolysis and reductions in skeletal muscle protein synthesis that are mitigated by resistance exercise. FASEB J. 2018;32 (1):265-75. doi: 10.1096/fj.201700158RR

56. Ferretti R, Moura EG, Dos Santos VC, et al. High-fat diet suppresses the positive effect of creatine supplementation on skeletal muscle function by reducing protein expression of IGFPI3K-AKT-mTOR pathway. PLoS One. 2018;13 (10):e0199728. Published 2018 Oct 4. doi: 10.1371/journal.pone.0199728

57. Jiao J, Demontis F. Skeletal muscle autophagy and its role in sarcopenia and organismal aging. Curr Opin Pharmacol. 2017;34:1-6. doi: 10.1016/j.coph.2017.03.009

58. Webster BR, Scott I, Traba J, Han K, Sack MN. Regulation of autophagy and mitophagy by nutrient availability and acetylation. Biochim Biophys Acta. 2014;1841 (4):525-34. doi: 10.1016/j.bbalip.2014.02.001

59. Cannataro R, Carbone L, Petro JL, et al. Sarcopenia: Etiology, Nutritional Approaches, and miRNAs. Int J Mol Sci. 2021;22 (18):9724. doi: 10.3390/ijms22189724


Review

For citations:


Pleshchev I.E., Nikolenko V.N., Achkasov E.E., Shkrebko A.N., Pleshchevа T.N., Birg A.B., Xinliang Z., Grekov D.A. The efficacy of nutritional support and its role in the treatment of persons with sarcopenia. Patient-Oriented Medicine and Pharmacy. 2023;1(1):12-22. (In Russ.) https://doi.org/10.37489/2949-1924-0003

Views: 4294


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2949-1924 (Online)

Адрес редакции и издательства:

ООО «Издательство ОКИ»
115522, Москва, Москворечье ул., 4-5-129

Генеральный директор Афанасьева Елена Владимировна

Тел. + 7 (916) 986-04-65; Email: eva88@list.ru