Preview

Patient-Oriented Medicine and Pharmacy

Advanced search

Glymphatic system in patients with multiple sclerosis

https://doi.org/10.37489/2949-1924-0086

EDN: FJSNPP

Abstract

   The glymphatic system in patients with multiple sclerosis (MS) is an important object of research because it plays a key role in the removal of metabolites and maintenance of homeostasis in the central nervous system. In MS, which is characterized by demyelination and inflammation, the functions of the glymphatic system may be impaired, leading to the accumulation of toxic substances in the brain and aggravation of neurodegenerative processes. Understanding the relationship between the
glymphatic system and MS will provide new horizons for potential therapies and may help improve the clinical condition of patients and slow disease progression.

About the Authors

N. N. Spirin
Yaroslavl State Medical University
Russian Federation

Nikolay N. Spirin, Dr. Sci. (Med.), Professor, Head of the Department

Department of Nervous Diseases with Medical Genetics and Neurosurgery

Yaroslavl

РИНЦ AuthorID: 523232


Competing Interests:

The authors declare no conflict of interest



D. S. Krytskova
Yaroslavl State Medical University
Russian Federation

Darina S. Krytskova

Yaroslavl


Competing Interests:

The authors declare no conflict of interest



A. S. Aksenova
Yaroslavl State Medical University
Russian Federation

Anastasia S. Aksenova

Yaroslavl


Competing Interests:

The authors declare no conflict of interest



References

1. Mestre H, Mori Y, Nedergaard M. The Brain's Glymphatic System: Current Controversies. Trends Neurosci. 2020;43(7):458-466. doi: 10.1016/j.tins.2020.04.003.

2. Hablitz LM, Nedergaard M. The Glymphatic System: A Novel Component of Fundamental Neurobiology. J Neurosci. 2021;15;41(37):7698-7711. doi: 10.1523/JNEUROSCI.0619-21.2021.

3. Weed LH. Studies on Cerebro-Spinal Fluid. No. III : The pathways of escape from the Subarachnoid Spaces with particular reference to the Arachnoid Villi. J Med Res. 1914 Sep;31(1):51-91.

4. Rasmussen MK, Mestre H, Nedergaard M. The glymphatic pathway in neurological disorders. Lancet Neurol. 2018;17(11):1016-1024. doi: 10.1016/S1474-4422(18)30318-1.

5. Mestre H, Tithof J, Du T, et al. Flow of cerebrospinal fluid is driven by arterial pulsations and is reduced in hypertension. Nat Commun. 2018; 19;9(1):4878. doi: 10.1038/s41467-018-07318-3.

6. Iliff JJ, Wang M, Liao Y, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci Transl Med. 2012;15;4(147):147ra111. doi: 10.1126/scitranslmed.3003748.

7. Louveau A, Smirnov I, Keyes TJ, et al. Structural and functional features of central nervous system lymphatic vessels. Nature. 2015; 16;523(7560):337-41. doi: 10.1038/nature14432.

8. Kondratiev AN, Tsentsiper LM. Glymphatic system of the brain: structure and practical significance. Russian Journal of Anesthesiology and Reanimatology. 2019;(6):72-80. (In Russ.). doi: 10.17116/anaesthesiology201906172.

9. Drandrova E.G., Merkulova L.M. Functional Anatomy of Cerebral Vessels and Their Role in Cerebrospinal Fluid Circulation. Modern Problems of Science and Education. 2022;6-2. URL: https://science-education.ru/ru/article/view?id=32114 (date of request: 06. 06. 2025). doi: 10.17513/spno.32114.

10. Chen X, Deng S, Lei Q, et al. miR-7-5p Affects Brain Edema After Intracerebral Hemorrhage and Its Possible Mechanism. Front Cell Dev Biol. 2020 Dec 16;8:598020. doi: 10.3389/fcell.2020.598020.

11. Babiyants AYa, Khananashvili YaA. Cerebral circulation: physiological aspects and modern research methods. Journal of Fundamental Medicine and Biology. 2018; 3:46–54. (In Russ.)

12. Nikolenko VN, Oganesyan MV, Yakhno NN, Orlov EA, Porubayeva EE, Popova EY. The brain’s glymphatic system: physiological anatomy and clinical perspectives. Nevrologiya, neiropsikhiatriya, psikhosomatika = Neurology, Neuropsychiatry, Psychosomatics. 2018;10(4):94-100. (In Russ.) doi: 10.14412/2074-2711-2018-4-94-100.

13. Jessen NA, Munk AS, Lundgaard I, Nedergaard M. The Glymphatic System: A Beginner's Guide. Neurochem Res. 2015;40(12):2583-99. doi: 10.1007/s11064-015-1581-6.

14. Morris AW, Sharp MM, Albargothy NJ, et al. Vascular basement membranes as pathways for the passage of fluid into and out of the brain. Acta Neuropathol. 2016 May;131(5):725-36. doi: 10.1007/s00401-016-1555-z.

15. Bakker EN, Bacskai BJ, Arbel-Ornath M, et al. Lymphatic Clearance of the Brain: Perivascular, Paravascular and Significance for Neurodegenerative Diseases. Cell Mol Neurobiol. 2016 Mar;36(2):181-94. doi: 10.1007/s10571-015-0273-8.

16. Weller RO, Djuanda E, Yow HY, Carare RO. Lymphatic drainage of the brain and the pathophysiology of neurological disease. Acta Neuropathol. 2009 Jan;117(1):1-14. doi: 10.1007/s00401-008-0457-0.

17. Nakada T, Kwee IL, Igarashi H, Suzuki Y. Aquaporin-4 Functionality and Virchow-Robin Space Water Dynamics: Physiological Model for Neurovascular Coupling and Glymphatic Flow. Int J Mol Sci. 2017 Aug 18;18(8):1798. doi: 10.3390/ijms18081798.

18. Zhang ET, Inman CB, Weller RO. Interrelationships of the pia mater and the perivascular (Virchow-Robin) spaces in the human cerebrum. J Anat. 1990 Jun;170:111-23.

19. Bah TM, Goodman J, Iliff JJ. Sleep as a Therapeutic Target in the Aging Brain. Neurotherapeutics. 2019 Jul;16(3):554-568. doi: 10.1007/s13311-019-00769-6.

20. Rangroo Thrane V, Thrane AS, Plog BA, et al. Paravascular microcirculation facilitates rapid lipid transport and astrocyte signaling in the brain. Sci Rep. 2013;3:2582. doi: 10.1038/srep02582.

21. Scheltens P, Blennow K, Breteler MM, et al. Alzheimer's disease. Lancet. 2016 Jul 30;388(10043): 505-17. doi: 10.1016/S0140-6736(15)01124-1.

22. Breymann CS. Die lymphatischen Abflusswege von Gehirn und Hypophyse im Mausmodell Inaugural (Dissertation zur Erlangung des Doktorgrades fur Zahnheilkunde der Medizinischen FakultКt der Georg-August-Universitat zu Gottingen); 2016. doi: 10.53846/goediss-5526.

23. Mills S, Cain J, Purandare N, Jackson A. Biomarkers of cerebrovascular disease in dementia. British Journal of Radiology. 2007;80:S128-S145. doi: 10.1259/bjr/79217686.

24. Hubbard JA, Hsu MS, Seldin MM, Binder DK. Expression of the Astrocyte Water Channel Aquaporin-4 in the Mouse Brain. ASN Neuro. 2015 Oct 21;7(5):1759091415605486. doi: 10.1177/1759091415605486.

25. Stolyarov I.D., Osetrova B.A. Multiple sclerosis. Saint Petersburg 2002, 173 p.

26. Fournier AP, Gauberti M, Quenault A, Vivien D, Macrez R, Docagne F. Reduced spinal cord parenchymal cerebrospinal fluid circulation in experimental autoimmune encephalomyelitis. J Cereb Blood Flow Metab. 2019 Jul;39(7):1258-1265. doi: 10.1177/0271678X18754732.

27. Jakimovski D, Zivadinov R, Weinstock-Guttman B, et al. Longitudinal analysis of cerebral aqueduct flow measures: multiple sclerosis flow changes driven by brain atrophy. Fluids Barriers CNS. 2020 Jan 31;17(1):9. doi: 10.1186/s12987-020-0172-3.

28. Schubert JJ, Veronese M, Marchitelli L, et al. Dynamic 11C-PiB PET Shows Cerebrospinal Fluid Flow Alterations in Alzheimer Disease and Multiple Sclerosis. J Nucl Med. 2019 Oct;60(10):1452-1460. doi: 10.2967/jnumed.118.223834.

29. Carotenuto A, Cacciaguerra L, Pagani E, Preziosa P, Filippi M, Rocca MA. Glymphatic system impairment in multiple sclerosis: relation with brain damage and disability. Brain. 2022 Aug 27;145(8):2785-2795. doi: 10.1093/brain/awab454.

30. Karussis D. The diagnosis of multiple sclerosis and the various related demyelinating syndromes : a critical review. J Autoimmun. 2014 Feb-Mar;48-49:134-42. doi: 10.1016/j.jaut.2014.01.022.

31. Lassmann H. Hypoxia-like tissue injury as a component of multiple sclerosis lesions. J Neurol Sci. 2003 Feb 15;206(2):187-91. doi: 10.1016/s0022-510x(02)00421-5.

32. Peng W, Achariyar TM, Li B, et al. Suppression of glymphatic fluid transport in a mouse model of Alzheimer's disease. Neurobiol Dis. 2016 Sep;93: 215-25. doi: 10.1016/j.nbd.2016.05.015.

33. Serafini B, Rosicarelli B, Veroni C, et al. Epstein-Barr Virus-Specific CD8 T Cells Selectively Infiltrate the Brain in Multiple Sclerosis and Interact Locally with Virus-Infected Cells: Clue for a Virus-Driven Immunopathological Mechanism. J Virol. 2019 Nov 26;93(24):e00980-19. doi: 10.1128/JVI.00980-19.

34. Jaquiéry E, Jilek S, Schluep M, Meylan P, Lysandropoulos A, Pantaleo G, Du Pasquier RA. Intrathecal immune responses to EBV in early MS. Eur J Immunol. 2010 Mar;40(3):878-87. doi: 10.1002/eji.200939761. Erratum in: Eur J Immunol. 2011 May;41(5):1501.

35. Lünemann JD, Edwards N, Muraro PA, et al. Increased frequency and broadened specificity of latent EBV nuclear antigen-1-specific T cells in multiple sclerosis. Brain. 2006;129(6):1493–1506. Doi: 10.1093/brain/awl067.

36. Lünemann JD, Jelcić I, Roberts S, Lutterotti A, Tackenberg B, Martin R, Münz C. EBNA1-specific T cells from patients with multiple sclerosis cross react with myelin antigens and co-produce IFN-gamma and IL-2. J Exp Med. 2008 Aug 4;205(8):1763-73. doi: 10.1084/jem.20072397.

37. Rohr SO, Greiner T, Joost S, et al. Aquaporin-4 Expression during Toxic and Autoimmune Demyelination. Cells. 2020 Sep 28;9(10):2187. doi: 10.3390/cells9102187.


Review

For citations:


Spirin N.N., Krytskova D.S., Aksenova A.S. Glymphatic system in patients with multiple sclerosis. Patient-Oriented Medicine and Pharmacy. 2025;3(2):22-27. (In Russ.) https://doi.org/10.37489/2949-1924-0086. EDN: FJSNPP

Views: 61


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2949-1924 (Online)

Адрес редакции и издательства:

ООО «Издательство ОКИ»
115522, Москва, Москворечье ул., 4-5-129

Генеральный директор Афанасьева Елена Владимировна

Тел. + 7 (916) 986-04-65; Email: eva88@list.ru